MEPI

Subgroup Contributed Talks

eSMB2020 eSMB2020 Follow Tuesday at 1:30pm EDT
Share this

Laura Strube

Virginia Tech
"The role of repeat infection in the dynamics of a simple model of waning and boosting immunity"
Some infectious diseases produce lifelong immunity while others only produce temporary immunity. In the case of short-lived immunity, the level of protection wanes over time and may be boosted upon re-exposure, via infection or vaccination. Previous work developed a simple model capturing waning and boosting immunity, known as the Susceptible-Infectious-Recovered-Waned-Susceptible (SIRWS) model, which exhibits rich dynamical behavior including supercritical and subcritical Hopf bifurcations among other structures. Here, we extend the bifurcation analyses of the SIRWS model to examine the influence of all parameters on these bifurcation structures. We show that the bistable region, involving both a stable fixed point and a stable limit cycle, exists only for a small region of biologically realistic parameter space. Furthermore, we contrast the SIRWS model with a modified version, where immune boosting depends on the occurrence of a secondary infection. Analysis of this extended model shows that oscillations and bistability, as found in the SIRWS model, depend on strong assumptions about infectivity and recovery rate of secondary infection. Understanding the dynamics of models of waning and boosting immunity is important for accurately assessing epidemiological data.


Miranda Teboh-Ewungkem

Lehigh University
"Mathematical assessment of the impact of human-antibodies on sporogony during the within-mosquito dynamics of Plasmodium falciparum parasites"
We develop and analyze a deterministic ordinary differential equation mathematical model for the within-mosquito dynamics of the Plasmodium falciparum malaria parasite. Our model takes into account the action and effect of blood resident human-antibodies, ingested by the mosquito during a blood meal from humans, in inhibiting gamete fertilization. The model also captures subsequent developmental processes that lead to the different forms of the parasite within the mosquito. Continuous functions that model the switching transition from oocyst to sporozoites as well as human antibody density variations within the mosquito gut are proposed and used. In sum, our model integrates the developmental stages of the parasite within the mosquito such as gametogenesis, fertilization and sporogenesis culminating in the formation of sporozoites. Quantitative and qualitative analyses including a sensitivity analysis for influential parameters are performed. We quantify the average sporozoite load produced at the end of the within-mosquito malaria parasite's developmental stages. Our analysis shows that an increase in the efficiency of the ingested human antibodies in inhibiting fertilization within the mosquito's gut results in lowering the density of oocysts and hence sporozoites that are eventually produced by each mosquito vector. So, it is possible to control and limit oocysts development and hence sporozoites development within the mosquito by boosting the efficiency of antibodies as a pathway to the development of transmission-blocking vaccines.


Maia Martcheva

University of Florida
"Coinfection Dynamics of Heroin Transmission and HIV Infection in a Single Population"
We propose a model of a joint spread of heroin use and HIV infection. The unique disease-free equilibrium always exists and it is stable if the basic reproduction numbers of heroin use and HIV infection are both less than 1. The semi-trivial equilibrium of HIV infection (heroin use) exists if the basic reproduction number of HIV infection (heroin use) is larger than 1 and it is locally stable if and only if the invasion number of heroin use (HIV infection) is less than 1. When both semi-trivial equilibria lose their stability, a coexistence equilibrium occurs, which may not be unique. We compare the model to US data on heroin use and HIV transmission. We conclude that the two diseases in the US are in a coexistence regime. Elasticities of the invasion numbers suggest two foci for control measures: targeting the drug abuse epidemic and reducing HIV risk in drug-users.






eSMB2020
Hosted by eSMB2020 Follow
Virtual conference of the Society for Mathematical Biology, 2020.